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Existence of phase transitions in a model three-component 
solution 
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Department of Chemistry, Texas Christian University, Fort Worth, Texas 76123, USA 

Received 10 May 1985 

Abstract. A model three-component solution is considered in which the bonds of the lattice 
hd ( d  = 2 or 3) are covered by rod-like molecules of types AA, BB or AB. The ends of 
molecules near a common lattice site interact with energies cAA. eEE, and cAE. The model 
is equivalent to an Ising model on a line graph with coupling constants J ,  = 

and ~ ~ = ( 2 j ~ ~ ~ - f i ~ ~ - + ~ ~ ) / 4 ,  and with a field h , =  
( 2 d  - 1 ) ( ~ ~ ~  - ~ ~ * ) / 4 -  ( f iBB - pAA)/4. The Peierls argument is used to prove that demixing 
into a pure AA and a pure BB phase occurs at sufficiently low temperatures if J ,  < 0, p ,  < 0 
and h ,  = O .  If J ,<O and f i , >  lh,l,  an ordered phase consisting of only AB molecules is 
proved to exist at sufficiently low temperatures. 

1. Introduction 

Wheeler and Widom (1968) introduced a lattice model of a three-component solution 
containing rod-like molecules of types AA, BB and AB. Each bond of the lattice is 
covered by a single molecule. The ends of molecules near a common lattice site interact 
with energy EAA if both ends are of type A, if 
one end is of type A and the other end is of type B. A typical configuration for such 
a system is illustrated in figure 1 for Z2. 

if both ends are of type B and 

Figure 1. Configuration of molecules on Z2.  
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Under the simplifying assumption that a type A and a type B molecular end near 
a common site repel infinitely ( &AB + CO), and that like ends do not interact ( &AA = EBB = 
0), the model has only two reduced activities as thermodynamic variables and can be 
easily mapped onto the standard Ising model on the same lattice. The bulk and 
interfacial properties of the model in this special case have been investigated by Wheeler 
and Widom (1968) and Widom (1984). 

We consider the model with general finite interactions &AA, EBB and &AB. We 
(Huckaby and Kowalski 1984) studied the zeros of the grand partition function for 
this model and, using some results of Heilmann (1971) and Ruelle (1973), proved that 
there are no phase transitions if ( & A A +  &BB)/2. In this paper we shall prove that 
if EAB > (&AA+ E B B ) / &  then ordered phases exist at sufficiently low temperatures for 
certain ranges of the chemical potential differences pAB - pAA and p A B  - pBB. Since 
vacant sites are not allowed, the model is considered in the limit in which the chemical 
potentials p A A ,  /.LBB and /.LAB all tend to infinity; however, differences such as /LAB - p A A  

or /LAB - /ABB are finite thermodynamic variables which determine the relative concentra- 
tions of the three molecular species at equilibrium. 

2. Ising representation of the model 

As mentioned by Wheeler and Widom (1968), the general model with finite interactions 
can be formulated as an Ising model on a decorated lattice. Although we previously 
treated the model as a lattice gas (Huckaby and Kowalski 1984), it is convenient in 
the present context to consider instead the Ising representation. For simplicity, we 
shall consider the model only on Z d  ( d  = 2 or 3). The decorated lattice A2 corresponding 
to the model on Z2 is illustrated in figure 2. The &dimensional lattice Ad is a line 
graph, i.e. it can be covered by a set of complete graphs such that each vertex of A d  

is covered by exactly two complete graphs. (A complete graph C, is a graph containing 
U vertices together with links joining every pair of vertices.) The complete graphs C2 
and c * d  form covering sets for the line graph A d  associated with the model on Zd,  
where each site of Ad is covered by a vertex from one C, and from one C 2 d  graph. 

If we let Si = +1 (Si = -1) indicate that site i E A d  is occupied by a type A (type 
B) molecular end, then we can formally write the grand canonical partition function 

Figure 2. Line graph A, associated with the model on Z2. The square region enclosed by 
a dotted line is referred to in the Peierls argument of 5 4. 
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for the model on A d  as 
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(1) 

where the Hamiltonian is given as 

+ PAB[( 1 - S, 1 ( 1 + S, 1 + ( 1 + SI 1 ( 1 - S, )l}/4. (2)  

Collecting terms in equation ( 2 ) ,  we see that the Hamiltonian, except for a constant 
term, can be written as 

ffid({Sll) = J ,  c U, +PI c SS, - h l  c s,, (3) 
( I J  J C  C z d  ( I J ) C  C ' z  I €  \ d  

where J I = ( & A A +  &BB-2&AB)/4, PI = ( 2 P A B - P A A - F B B ) / 4  and h I =  

( 2 d  - ~ ) ( E B B - B A A ) / ~ - ( P B B - / ~ A A ) / ~ .  Hence, the Wheeler-Widom model is 
equivalent to an  Ising model on a line graph composed of complete graphs C2 and 
C Z d ,  each of which has a different coupling constant. 

We have previously shown (Huckaby and  Kowalski 1984) that the model has no 
phase transition if J ,  3 0. The Lee-Yang circle theorem (Lee and Yang 1952) suffices 
to show that there are also no phase transitions if JI < 0, p,  < 0 and  h,  # 0. 

In § 3 we shall show that, for a range of the parameters J , ,  p r  and h,,  the ground 
states of the Hamiltonian of equation (3) correspond to ordered structures which are 
two-fold degenerate. In 8 4 we use the Peierls argument to prove the existence of 
ordered phases for low-temperature regions of ( J , ,  p,, h,, T) space for which the ground 
states ( T  = 0) are two-fold degenerate. The original treatment of Peierls (1936) has 
been generalised and modified to treat a large class of lattice models (Griffiths 1964, 
Dobrushin 1968, Heilmann 1972, 1974, Sinai 1982, Holsztynski and Slawny 1978, 
Frohlich et a1 1980). Since the ground states we consider are related either by spin 
inversion or  by translation, then the methods described by Griffiths (1964) and  
Dobrushin (1968) are sufficient to prove the existence of ordered phases in the present 
model. Since the model is disordered at sufficiently high temperatures, then there are 
order-disorder phase transitions in the model. 

3. Ordered ground-state structures 

A portion of &, which consists of one C Z d  graph together with the C2 graphs which 
border it will be called a 'star', y d .  Stars for d = 2 and for d = 3 are illustrated in 
figure 3. We shall consider h d  to be a union of stars. This allows us to impose on A d  

any of a large class of boundary conditions, including periodic boundaries. Since A d  

is a union of stars, the Hamiltonian on Ad can then be written as a sum of Hamiltonians 
restricted to each star portion of A d .  The Hamiltonian restricted to a star 9, is given 
as 
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d =  2 d = 3  

Figure 3. A star portion of Ad for which a restricted Hamiltonian is defined by equation 
(4). A star consists of one C,, graph together with the C, graphs which border it. 

In equation ( 4 ) ,  the factor of $ which preceeds the second and third summations should 
be replaced by unity if site i or  site j is on the boundary of Ad. 

Let H ,  denote the lowest value of the restricted Hamiltonian for a star portion of 
a configuration. Stars with this value will be called ‘ground-state stars’. Stars with 
higher values of the restricted Hamiltonian, H,, will be called ‘excited-state stars’. 
The value f& = min(H, - H,) will be of importance in the construction of the Peierls 
argument in § 4. 

We see from equation ( 4 )  that a star composed of all AA molecules has the same 
value of the restricted Hamiltonian as a star composed of all BB molecules if and only 
if h ,  = 0. If hI  = 0, then changing the configuration from an  all AA star or an  all BB 
star adds - J , a - p , b  to the value of the restricted Hamiltonian, where a and b are 
both non-negative and not both zero. Therefore, a sufficient condition for an all AA 
star or an  all BB star to be a ground-state star is that h,  = 0, JI < 0 and  p I  < 0. 

Conversely, suppose the all BB and all AA configurations are ground states of A d .  

Comparing the Hamiltonian for the all BB configuration with one which is identical 
except that one BB molecule is replaced by an  AA molecule, we see that J ,<O 
necessarily. By comparing the all BB configuration to one which is identical to it 
except that the type B moIecular ends at the vertices of one CZd graph are replaced 
by type A molecule ends, we see that p ,  < 0 necessarily. Hence, h ,  = 0, J ,  < 0 and p,  < 0 
are the necessary and sufficient conditions for the ground states of A d  to consist of 
all AA or  all BB molecules. 

A consideration of the possible configurations on a star indicates that if h ,  = 0, 
JI < 0 and  p I  < 0, then 

(Yd =min{-p1, - ( 4 d  - 2 ) J , } > O .  ( 5 )  

We shall next determine the region of ( J , ,  p,, h , )  space for which A d  has a two-fold 
degenerate ground state corresponding to ordered configurations consisting of only 
AB molecules, where the vertices of each C Z d  graph are occupied by either all type A 
or  all type B molecular ends. It is clear from equation (3)  that these two configurations 
on Ad have the same value of the Hamiltonian. Suppose these configurations are 
ground-state configurations. By comparing the Hamiltonian for one such configuration 
to that for a configuration which differs only in that the orientation of one AB molecule 
is switched, we see that J ,  < 0 necessarily. Comparing one of the two configurations 
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to one in which the type A or  type B molecular ends at  the vertices of one c 2 d  graph 
are replaced by the other type of end, we find that pl > I hll necessarily. 

In addition, we see from equation (4) that the two stars which are composed of 
AB molecules, such that the C Z d  graph is occupied by only one type of molecular end, 
have the same value of the restricted Hamiltonian. Changing such a star configuration 
adds -Jla + (pi  + h i ) b  to the value of the restricted Hamiltonian of equation (4), where 
a and b are both non-negative and not both zero. Therefore, sufficient conditions for 
a ground-state star to contain all AB molecules with the C Z d  graph occupied by only 
one type of molecular end are that Jl<O and p l >  Ihll. These are then the necessary 
and sufficient conditions for the ground-state configurations on A d  to consist of only 
AB molecules, such that the vertices of each CZd graph are occupied by either all type 
A or  all type B molecular ends. 

A consideration of the possible configurations on a star indicates that if JI < 0 and  
PI> lhll, then 

ffd = min{pl - 1 hll, - (3d  - 2 ) J * }  > 0. (6) 

In the next section the values of ad given by equations (5) and (6) will be used in a 
Peierls argument to prove that the ordered ground-state structures discussed above 
persist as ordered phases at sufficiently low temperatures. 

4. Existence of ordered phases 

In this section we shall construct a Perierls argument to prove that ordered phases 
exist in the model at sufficiently low temperatures in regions of (JI, pi,  hi,  T )  space 
for which the corresponding ground states ( T  = 0 ;  have the ordered structures discussed 
in § 3. 

Since the notion of a contour is central to the Peierls argument, we now define 
what we mean by a contour in a configuration. For the two-dimensional lattice A2,  
the square region rz outlined by dots in figure 2 is said to be associated with the star 
Y ,  which has its C, portion interior to r z .  Analogously in three dimensions, a cubic 
region r3 is associated with each star 9, ir. AI. If  y d  is an  excited-state star, then the 
associated region r, is said to be a contour segment. Two contour segments are said 
to be connected in the two-dimensional case if they share a con,mon vertex and in the 
three-dimensional case if they share a common edge. A simply connected set of contour 
segments constitutes a contour. A contour is said to be closed if its outer border does 
not intersect the border of . id. A closed contour which is not surrounded by another 
closed contour is said to be an outer contour. 

Let OAA (OBB) denote the ordered structure in which every bond of Z d  contains 
an  AA molecule (BB molecule). Let 0,, denote the structure in which every bond of 
Zd contains an AB molecule such that each C Z d  of .id is occupied by either all type 
A or all type B molecular ends and such that the origin is occupied by a type A 
molecular end. Then let O,, denote the structure which is related to OAB by a unit 
translation of zd. 

If  N, is the number of bonds of Z d  which contain molecules which belong to an  
ordered structure Os on a lattice containing / ' i2, / /2 such bonds, then as discussed by 
Dobrushin (1968) and Griffiths (1972), there is an ordered phase in the thermodynamic 
limit if {Nfi)/(llidl/2) > i, where there are two symmetrically related ordered structures, 
and where the thermal average is taken only over configurations in which the outer 
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boundary of the lattice contains the ordered structure 0,. Convergence proofs of series 
expansions suffice to show that the model is disordered at high temperatures, thereby 
proving the existence of an order-disorder transition in the model. 

I f  the stars on the boundary are occupied by one of the four structures 0, discussed 
above, then all bonds of Z d  containing molecules not belonging to Os are enclosed 
by (or embedded within) an outer contour y. As a consequence, 

where  MI,^ is the maximum number of molecules enclosed by (or embedded in) a 
contour of length I y / ,  nlyl is the number of contours containing IyI segments, and P, 
is an upper bound to the probability that a given contour of length I y (  occurs in a 
configuration. 

The maximum number of molecules mlyl contained within a contour of length I y (  
is not greater than the number of molecules contained within a d-dimensional 
isoperimetric spherical region. A maximum of three edges of a contour segment r2 
can be on the outer border of a contour in A2, and a maximum of five faces of a 
contour segment r3 can be on the outer border of a contour in A3. The number of 
molecules enclosed by a closed contour does not exceed half the number of sites of 
A d  enclosed by the contour. A simple calculation then gives miy\ < (9/27r)ly12 in two 
dimensions and mlyi < (53'2/27r1'2)/ 

To obtain an upper bound to nIy+ first assign a number to each region rd in A d .  

There are at most lAd1/(2d) such regions at which a contour can be begun. To continue 
the contour, add any segments which are connected to the segment of the growing 
contour which has the lowest number assigned to it. Without regard to the molecular 
configurations of the contour, there are 2' ways to continue a contour in A2 and 218 
ways to continue a contour in A3. The process is terminated when the contour contains 
Iyl segments. There are at most 24d 'y1  configurations for a contour containing lyI 
segments. Hence, nl,, < [ l A d / / ( 2 d l y ( ) ] 2 - 8 2 1 6 i Y /  in two dimensions, and nlyl< 
[ lAd1/(2dly/) ]2- '82301y'  in three dimensions. The division by / y I  results since the choice 
of the first segment is arbitrary. Substituting for mIyl and niyl in equation (7)  yields 

in three dimensions. 

where ad and bd are constants. 
We now proceed to calculate an upper bound to P,. Suppose the boundary is 

composed of a ground-state structure 0,. Let Cy be the set of configurations which 
contain an outer contour y. With each configuration 6 E Cy we associate a configuration 
f*  E C: (this is a 1-1 correspondence) generated in the following manner. If 0, = OAA, 

change all OB, regions (together with their interiors) that border y by replacing all 
type A (type B) molecular ends with type B (type A) molecular ends. If 0, = OAB, 

change all O B A  regions (together with their interiors) that border y by translating each 
such region by a unit lattice spacing in Zd. After performing one or the other of the 
above operations, then replace the contour y with structure 0,. The resulting configur- 
ation (* has the property that 

where a d  is given by equation (5) if 0, = OAA or O6 = OBB and by equation ( 6 )  if 
0, = O A B  or 0 6  = O B A .  
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Hence 

exP(-ad I Y I/ k T ) .  (10) 

Equations (8) and (10) ensure that ( N s ) / (  lAd 1/2) > 1 at sufficiently low temperatures. 
Therefore, there are pure AA and pure BB phases in the model at sufficiently low 

temperatures if JI < 0, pI < 0 and hl  = 0. In addition, if J1 < 0 and p, > lhl\, there is an 
ordered pure AB phase in the model at sufficiently low temperatures. 
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